
!!!!!!
Written by Danny Yaroslavski

Created March 07/14 !
How does Lightbot teach programming? !

Document Overview:
This PDF provides an overview for what Lightbot is and what it has to do with Learning
Programming and Computer Science. !
About the Author:
Danny Yaroslavski has been programming for over eight years, has worked at companies
including Electronic Arts, Armor Games Inc, and Side FX Software. He is the primary
developer of Lightbot and holds a Bachelors of Computer Science from the University of
Waterloo (Canada). !

What is Programming? (General Concept) !
Programming is the way in which a person tells a computer what to do. A computer does not
understand regular English. A computer cannot be told to “walk the dog” or “create a painting
of the Mona Lisa”. Computers understand only a small set of instructions. Programming is the
way in which a computer is told to execute a series of instructions, from a set of instructions it
already knows, to, in general, solve a problem. !
The view you may have of the programmers and the programming we see today often
combines the visual of typed language written (ie C++, Java, Python) and the result of
executing it. For example: !
int a = 5;
int b = a + 5;
print (b); !
Output:
10 !
However, at the core, programming is not really about the language the computer understands,
or about typing expressions like shown above. It is more about the process with which we
come to a solution and think algorithmically about how to solve a problem.

!
!

What is Lightbot? !
Lightbot is a programming puzzle game. This means that at its core, it is a puzzle game, but its
game mechanics lend themselves to actually having a one-to-one relationship with
programming concepts (more on this later). !
The goal of Lightbot is to, in each level, guide a robot to light up all the blue tiles in each level.
To do so, you must ‘program’ the robot using a set of instructions. For example: !
 An arrow icon tells Lightbot to move forward one space.

 A lightbulb icon tells Lightbot to light up the tile he is standing on !!

Relating Lightbot to Programming !
Once you understand what programming means on a general level, and that is about thinking
algorithmically to get to a solution, you can begin to see how Lightbot relates to programming. !
Here, we’ll go over the different concepts that are taught in Lightbot. These concepts will be
split into two groups, the second of which has a more ‘direct’ link to programming. !
Programming practices - the order in which programmers solve problems
Control-flow - concepts that deal with the step-by-step sequence of program execution !
Programming Practices !
Planning
At the start of each level, players must evaluate a level and the instructions they have available
to them. Players must imagine some way to put themselves in the robot’s position and figure
out how to guide the robot to solve the level. !
This is the same as how programmers must understand and visualize a problem they are
tasked with, evaluate the instructions they have available to them in their language of choice,
and create a plan of action. !
Programming
Players must sequence instructions according to their plan (using instruction icons). !
This is the same as how programmers must write out their program (using code). !
Testing
Players run the program they’ve created and test to see if the solution holds. !
This is the same as executing a piece of code and seeing if the result holds with what’s
expected. !

!!
Debugging !
When a level is not solved correctly, players must look for what may have caused the problem.
This may include re-running Lightbot through the commands, or shifting commands around, or
removing commands, to understand where the problem came in. !
This is the same as what programmers must do when there is a bug in their code. They must
generally re-execute the program, paying special attention to what could have gone wrong, as
well as trace through where the mistake can be found. !
Control-Flow Concepts !
Control flow deals with how program execution occurs, one step at a time. There are often
similar structures used in all programming languages which are the building blocks for making
programs organized, modular and extendable. This includes procedures and loops. !
Sequencing Instructions
Players must place instructions in an order that gets read from first to last. !
This is much like how with code, programs execute one line at a time. !
Procedures
Players in Lightbot must use procedures when they don’t have enough space in the MAIN
block to solve a problem. Procedures are helpful for extracting patterns and re-using a set of
commands multiple times. Procedures also execute in a way that, when a P1 icon is run, all
the commands in PROC1 are executed, and at the end of PROC1, execution returns to the
command following the P1 icon. !
This is much like procedures or functions in a typed programming language. Procedures are
useful for re-using code and extracting out code that would otherwise be duplicated in a
program, or that deals with a specific set of actions. !
Loops
Players in Lightbot can use loops to solve some levels. Loops are useful for repetitive tasks,
and are an extension of extracting a pattern which occurs over and over. In Lightbot, recursion
is the type of looping that is used. !
This is much like a recursive loop in a typed programming language. Loops are, again, useful
for executing code that happens over and over. In a typed language, recursion is also
performed in the same way as in Lightbot, by calling a procedure from within the procedure
itself (ie. putting P1 in PROC1). At the end of the loop, program execution jumps to the start of
the loop, like it does in the game. In fact, complicated loop structures like Mutual Recursion
can be shown in Lightbot. !!!

If Lightbot had a Typed Language !
At its core, Lightbot is about programming, just without a typed language.
Imagining it were a typed language, we could have the following translation: !!

forward() proc1() !
turnLeft() proc2() !
turnRight() !
jump() !
light() !!

Then a program like the following: !!
 Would become !
 main:
 turnLeft()
 jump()
 light() !!!
And a program like the following: !!
 Would become !
 main:
 forward()
 proc1()
 proc1()

 proc1:
 jump()
 jump()
 light() !
Using the vocabulary at the top of the page, all of the levels in Lightbot Hour of Code™ can be
re-written using the typed language given. !!

Glossary of Terms !
A glossary of terms and definitions used, including technical terms. !
 !

Call As in ‘call the forward instruction’ or ‘call procedure 1’; execute a specific
instruction.
eg. Call the forward instruction : The robot will execute moving forward
eg. Call P1 : The robot will begin to read the instructions in the PROC1
block.

Control
Flow

The order in which a program executes between instructions. In general, it
flows from one command to the next. When a procedure is called,
however, the program ‘transfers control’ to the instructions in the
procedure. At the end of the procedure’s execution, the program transfers
control back to the instructions following the call to the procedure.

Execute Tell a computer to perform the instructions it is given (the program)

Execution Refers to the state in which a computer is in when executing instructions

Loop A control-flow concept in which a set of instructions is executed repetitively, over
and over.

Mutual
Recursion

A special type of recursion in which two or more procedures call each
other to make a larger loop. !
eg. At the end of PROC1, P2 is called, and at the end of PROC2, P1 is
called. This creates a large loop in which PROC1 calls PROC2 calls
PROC1 calls PROC2 and so on.

Procedure A smaller program that is used to extract a common set of instructions, or
a pattern of instructions from the main program. It can then be called from
within the larger program, one or more times. It may also be called from
another procedure. !
eg. Call P1 from MAIN to execute the instructions in PROC1.
eg. If P2 appears in PROC1, PROC2 is called from within PROC1.

Program n. A set of instructions that is written by a programmer

Program v. Write instructions to create a program.

Recursion The type of looping used in Lightbot Loops levels. When a procedure is
called from within itself.
eg. Putting the P1 command inside of PROC1 to cause a loop.

Run Same as execute: Tell a computer to perform the instructions it is given
(the program)

